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New Procedure for Computing Finite-Amplitude Distortion

BILL D. COOK
Departm.,e of Physics, Mkkigae State Universily, East Lansing, Michigan

(Received November 21, 1961)

An iterative process is described for the calculation of the distortion of plane finite-amplitude sound
waves in a dissipative, nondispersive medium. The method of calculation is a discrete-interval process of
considering the distortion of the wave while propagating through a small distance, correcting for absorption
within this distance, and then considering this new wave, etc. It is necessary to use a high-speed electronic
computer to obtain the spectral composition of the wave. The iterative process allows calculations beyond
the "discontinuity distance." The spatial change of the spectral composition is used for the calculation of
"absorption coefficients" describing the energy loss from the total wave and from the fundamental com-
ponent. These absorption coefficients, which are functions of distance from the source, are found to be
remarkably different.

INTRODUCTION Although the model here is based somewhat on the

TN recent years the problem of finite-amplitude sound same assumptions as those of the Fox and Wallace
waves has been approached through the solution of theory, a more basic aspect of the absorption mecha-

the nonlinear equation of motion. Although this ap- nism is introduced. A high-speed electronic computer is

proach has answered some of the questions concerning used to calculate the distortion. A parametric integra-

the propagation of finite-amplitude waves, the range tion method similar to that given by Fubini-Ghiron 4

of reliability of these theories, which are usually based is used. This integral method of Fubini-Ghiron has

on equations approximating the exact differential equa- also been given by Hargrove' and Keck and Beyer.

tion, is small. The reliability of this usually extends up This model is based on two fundamental assumptions

to the neighborhood o( the "discontinuity distance." which describe the distortion and absorption mecha-

However, from the lpaenomenological aspects of the nisms. These assumptions are the following:

problem, one can formulate a very simple model from (1) The distortion mechanism can be described by
which solutions at greater distances may be obtained, a change in phase velocity directly proportional to the
Presented here is such a model. While it necessitates particle velocity.
the use of a high-speed electronic computer, it allows (2) The absorption mechanism can be described by
one to compute, by an iterative process, the spectral assuming that the rate of the absorption of each
composition of the waves at all distances. It is not the harmonic is proportional to the amount of the harmonic
purpose of this paper to correlate the results of previous present and to the square of the frequency of the
theoretical and experimental investigations, but rather harmonic.
to show what may be obtained from a very simple
model. The readers are referred to the papers of Keck These basic postulates are applied to a wave by first
and Beyer' and Zarembo and Krasil'nikov' for reviews allowing the wave to distort while it propagates through
of existing analyses using the differential equation. a small interval, and then correcting for absorption.

A model approach was previously used by Fox and This wave of new shape is now allowed to distort and
Wallace,' who used a graphical analysis to determine be absorbed. By assuming that no discontinuity of the
the spectral composition and consequently determined wave shape is formed because of absorption, one may
an "absorption coefficient" for finite-amplitude waves, calculate by this continuing process the shape of the

wave at all distances. Although the absorption and
'W. Keck and R. T. Beyer, Phys. Fluids 3, 346-352 (1960). generation of the harmonics are treated independently
'L. K. Zarembo and V. A. Krasil'nikov, Soviet Phys.-Uspekhi

2, 580-399 (1959).
' F. E. Fox and W. A. Wallace, J. Acoust. Soc. Am. 26,994-1006 'R. Fubini-Ghiron, Alta Frequenz. 4, 530 (1935).

(1954). ' L. E. Hargrove, J. Acoust. Soc. Am. 32, 511-512 (1960).
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"- - given by'
S\!J4x) L=-c•(2[B/(2A )+-1]frU,((0))-1, (3)

where f is the frequency of the wave and Uj(0) is the
maximum particle velocity of the initial wave. This

___ distance L (known as the "discontinuity distance")
X -shall become one of the important parameters in de-

FiG. 1. Diagram showing the distortion process scribing the results from this model approach.
postulated for a finite-amplitude wave. The exact frequency dependence of the absorption

coefficient for most media is unknown.' Here we shall
in each small interval, the end result contains the inter- assume for simplicity that the rate of absorption is
action between absorption and generation mechanisms. proportional to the square of the frequency of the

Others',7 have considered similar absorption mecha- wave; this is characteristic of a viscous, heat-conducting
nisms along with distortion; however, the effect of the medium.
absorption on the generation of the harmonics is neg- In the absorption of infinitesimal waves, the expo-
lected. The range of these theories which are based on nential decay which describes the "diffusive nature"
the Fubini-Ghiron method does not exceed the dis- of the absorption, occurs because the damping forces
continuity distance as given by the dissipationless produced are proportional to the quantity being
theory. damped. Although for acoustic waves in a viscous,

The model presented here is not expected to be valid heat-conducting medium, the exponential decay arises
for extremely intense sound waves which may produce from a higher-order differential equation, we shall as-
periodic shock fronts but rather for sound waves of sume that the "diffusive nature" can be described by
moderate amplitudes traveling in a fairly absorbing a first-order differential equation, namely, the rate of ab-
medium. In particular, this model should be useful for sorption of a quantity is proportional to that quantity.
the investigation of finite-amplitude waves of the mega- However, in considering the "diffusive" absorption of
cycle frequencies in liquids. The calculations presented waves, the exponential is a special case. It requires
from this model are for a range of parameters which that the quantity being absorbed will remain at a con-
cover the practical experimental situations. stant value if the absorption mechanism vanishes.

However, since the amplitudes of the harmonics are
FORMULATION OF THE MODEL changing due to distortion while undergoing absorption,

the diffusive absorption process must be considered for
In this paper we shall consider plane acoustic waves each harmonic according to its growth. The harmonics

in a nonlinear, nondispersive medium. Following the are treated independently, i.e., the absorption of a
usual notation we write an equation relating the in- harmonic in a wave is the same as the absorption of an
stantaneous pressure p and density p as infinitisimal wave of that harmonic. Details of how the

B ' 2  generation affects the rate of the absorption are given

p=p +-A-- ±-2(-" '/ (1) in the Appendix.\=po o/ 2 + P/With these distortion and absorption mechanisms,it is relatively easy to calculate the spectral composi-
The zero subscripts refer to the undisturbed medium. tion of a finite amplitude wave by an iterative process.
The terms A and B are constants for a given medium In such a process, the results are expected to be more
at a given temperature. Using the above equation of valid for smaller increments of interval. No analytical
state, the phase velocity is treatment will be given here for the estimate of size

of these intervals in terms of the other parameters. It
c=co+-[B/(2A)+"]u, (2) should be noted, however, that for small absorption

accurate to the first order in u, where u is the particle parameters or greater amplitudes of the wave, the
velocity and co is the velocity of sound with infinitesimal wave approaches more closely to the dissipationless
amplitude. It is assumed here that this linear change case. For these conditions, it is reasonable to assume
of phase velocity with particle velocity is the only that intervals must be small.
mechanism which causes the wave to distort. Points on
the wave having larger values of particle velocity tend DETAILS OF COMPUTATIONS
to overtake points of lesser values. For a dissipationless To calculate the effects of distortion, we shall now
medium, an initially sinusoidal waveform will become gTneralize the method outlined by Hargroves for the
multiple valued at distances greater than a distance L dissipationless case. Let a function u= f(x) describe

6 W. W. Lester, J. Acoust. Soc. Am. 33, 1196 (1961). the particle velocity at a given time. The independent
7 L. Adler, "A Study of the Distortion of Finite Amplitude

Ultrasonic Waves in Liquids," M.S. thesis, Michigan State Uni- PhyJ. J. Markham, R. T. Beyer, and R. B. Lindsay, Revs. Modern
versity, East Lansing, Michigan, 1961. hys. 23,353-411 (1952).
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variable is a reduced spatial coordinate which describes I .0
the function in the range 0_x<22r. For simplicity we .9
shall now restrict f(x) to be an odd function. For .A- - O

arbitrary waveforms this restriction can be removed. Fio. 2. Normalized spec- UIO 7 -1

During a small interval of time At, the whole waveform tral composition of a typical- .

propagates a distance coAt. However, in addition to finite-amplitude wave versus .4

this velocity co, each point of the wave described by the reduced distance K..
the function u is assumed to propagate at a velocity
proportional to the value of the function. The velocity a s 4 7-'

of each point is given by Eq. (2). Figure 1 shows one K

half of an arbitrary waveform [described by f(x)] and
the resultant waveform [described by fi(x)] from The procedure for introducing absorption is the
such a distortion mechanism. The problem now is to The poeure for i ducing bs thecalculate the function f' (x) provided that .f(x) and following: assume a waveform (described by the coeffi-

cients b,.,); choose a small increment of k; calculate
B/A are known. the spectral composition of a distorted wave by Eq.As f(x) is an odd function, f1(x) is necessarily an thspcrlom sionfadsotewvebEq
odd function. Thus both can be expanded in a Fourier (9) (in terms of coefficients b..j+,); correct the coeffi-
sine series. Let cients (then described by b,,..+1 ) for absorption; and

repeat the above process using the previous results to

f(x) =F b. sinnx (4) describe the new wave. Each coefficient b.,,+, is cor-
rected independently according to the assumption that

and the absorption throughout the small interval of k is
proportional to the amount of the harmonic present

f,(x)=• b,, Isinnx. (5) at any given point in the interval. The frequency
dependence of the absorption must be considered.

If fi(x) is known, the expansion coefficients can be From the dissipationless theory,

calculated from b,,= (- 1)"(2/nk)J,((nk). (10)

2
b.,-=- I fi(x) sinnxdx. (6) It can be seen that Ab,.,(-=-b.,,+l-b.Ri) is approximately

_T f described by the first term of the power-series expres-

Graphically, one may obtain fi(x) if f(x) is known and sion of Eq. (10) in the form Ab...= a.,,kn-1 for small k.

thus obtain the coefficients b,,,. By parametric inte- Assuming this power dependence on k, the absorption-

gration, one may, in principle, analytically find these corrected coefficients can be written as

coefficients if f(x) and B/A are known. b.,,+,'=b.,,,exp(-aon 2Lk)+Ab.,4,M i(aon2 Lk). (11)
To evaluate Eq. (6) let

u=f[x(O)], (7) The first term of the right-hand side of Eq. (11) is the

where exponential decay if Ab.,,=0; a0 is the absorption

x(8)=f+kf(O). (8) coefficient of a wave of the fundamental frequency and
infinitesimal amplitude. The function A,, (aon2 Lk) cor-

The term kf(O) describes the distortion mechanism rects for the absorption of the changing function Ab.,j.
as required by Eq. (2). The value of k is restricted to This function A ,,, which is described in the Appendix,
be sufficiently small, such that the waveform does not is a power series for which the exponential power series
become multiple valued. Hargrove has shown that k is a special case. The n-squared dependence of the ex-
represents the fractional distance to the discontinuity ponential and A _, is introduced by the assumption
distance L of an initially sinusoidal wave. In other of the frequency squared dependence of the absorp-
words, if in a dissipationless medium an initially tion. The product kL gives the actual distance that the
sinusoidal wave propagates through a distance R, the wave propagates for the increment k.
spectral composition can be calculated using k= R/L. For the calculations presented here the initial wave-
Substitution of Eqs. (7) and (8) into Eq. (6) gives form is assumed to be sinusoidal with the unit ampli-

tude (b1,o= 1). The corresponding particle velocity and
21 =_ 9 pressure may be determined through the parameter L.

b,, 1=J {f(9) sin[n8+nkf(G)]} l+kf'(9)}dO. (9) The results are expressed in terms of the product aeL
and the reduced distance K. This distance K, which

Thus if we know the description of the particle velocity is the distance that the wave has propagated from the

at any given time, we can find the description of the origin, is given by K= mik, where m is the number of
particle velocity at a new time if we are considering intervals. When K= 1, the wave has propagated a
only the distortion mechanism. distance equal to the discontinuity distance.
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I.0 where I is the intensity of the sound wave. This coeffi-
* .10cient aT describes the rate at which the energy of the

.- - .total wave is dissipated at any given distance. One
may also define an absorption coefficient which de-

Fio. 3. Comparison of the
normalized intensity(solid line) scribes the rate of loss of energy from the fundamental
calculated from spectral curves component alone as

T. Jof Fig. 2 and the exponential
.05 decay expected for wave a= -d(U 1

2)/2U'2dx= -dUI/Utdx.undergoing no finite-amplitude
distortion. Figure 4 shows these coefficients (normalized to a0) for

aoL=0.10. It is important to stress that the absorption
.0- ... coefficient for the fundamental frequency at differs

. . 3 4 5 6 7 6 9 10 from the total absorption coefficient ar for most values
K of K. It can, therefore, be concluded that the total

The calculations were done by the Michigan State 3 -- --

integral computer. To accurately retain the shape of &. ".0

the waveform, as many as 16 harmonics were computed
for each interval. In the results presented here, the a.L .02
value of k never exceeds 0.05, one-twentieth of the dis-
continuity distance. FiO. 5. Normalized

£.L-.OS total absorption coeffi-
DISCUSSION OF RESULTS dents for various values

of a0L.
Figure 2 shows the spectral composition of a wave ,a.L .10

from a typical calculation using this model. This com- -

position is given in terms of the harmonic structure of Ka.L..20
the particle velocity. The amplitudes U,,(K) of the I , .50
harmonics are normalized to the particle velocity am- 0 .5 to X.5 2.0 2.5
plitude U1(0) of the initial sinusoidal wave. The value
of aoL equals 0.10 for these calculations which extend
to 10 times the discontinuity distance. For this cal- absorption coefficient is not determined by experimental

absorption measurements of the fundamental compo-
nent only. The difference between coefficients at and

4.0 aT can be very large, especially at small distances;

I the energy of the fundamental is being lost by both
FiG. 4. Normalized distortion and absorption while the energy of the total

absorption coeffici- wave is being lost only by absorption.
ents for the total As to be expected, the values of ar/ao and at/as

2. wave (S"/ao and for depend on the parameter aoL. Figures 5 and 6 showa ' the fundamental
- component al/ao for the results for ar/ao and a1/ao, respectively, for various

1.5 the values given in values of the parameter aoL. For large values of a0L
Figs. 2 and 3 (larger than 0.50), which means either high absorption,

j .0 small pressure, or small nonlinearity, the absorption
2 4 6 S 10

culation, the amplitudes of higher harmonics peak in 20- %/ -

the region I <K<2. /
Figure 3 shows the effect of the nonlinear propaga- / /

tion on the dissipation of the sound intensity calculated 10

from the curves presented in Fig. 2. As is expected, Fuo. 6. Normalized
there is a large difference between an exponential decay 5__ -7 - %W. .0 coeffident for various
and the decay predicted by this model. The predicted values of aoL.
greater total absorption is, of course, caused by the
higher rate of absorption of the generated harmonics.
To describe this higher rate of absorption, one may
define a finite amplitude absorption coefficient' as %'. o

a =- ( /21) (dI/dx), I -. T A *
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40 tend to become negligible even at moderate values of
ao.L.

CONCLUSION
IC' - - - An iterative process is used to determine the spectral

composition of plane finite-amplitude waves in a
a -dissipative medium. From the spatial change of the
_c .amplitudes of the harmonic components, "absorption

- - - -coefficients" describing the loss of the energy from
the total wave and from the fundamental component"I . ".2 .4 o are computed. The results are presented as families

Fio. 7. The maximum values of the normalized absorption
coefficients versus the parameter aL. .4

coefficients aT and at are nearly equal to aG. However, L I

for small values of aoL, these absorption coefficients
become large compared to ao. Also at small values of ..
K, the absorption coefficients, ar and a,, differ greatly.
For example, for K=0.50 and aoL=O.Ol, the ratio
al/aT is approximately equal to 10. FoG. 9. Normalized U o00o

The maximum values of at/as and al/ao for values second harmonic for . / -
various values of aoL.

of aoL <0.10 occur in the neighborhood of K = 2.0, and Dashed fine ves values %
K= 1.5, respectively. The dependence of the maximum of dissipationless theory.
values of ar/ao and ai/ao on aoL is shown in Fig. 7.

In Fig. 8 the fundamental component is shown for - .
several values of aoL. As aoL decreases, the values of
U,(K)/U 1 (0) are approaching upper limits. Of course, %L.-

o.s LO L 5 2o 2.

of curves having the parameter aoL. This parameter
fo. 8. Normalized .p - - determines the experimental situation as aG, the ab-

nent for various - . sorption coefficient of the fundamental component

valuesofaoL.Dashed . a.i..oi of infinitesimal amplitude, and L, the "discontinuity
line gives values % ,L.,o0 distance," describes the absorption and distortion
of dissipationless .49L2 m
theory. 4 %L. .30.m.c.aoism...ACKmechanisms.
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for K <1 the limiting values are those given by the . -4

dissipationless theory, not only for the fundamental,
but also for the higher harmonics. . - -

Figure 9 shows the effect of the parameter aoL on Fio. 10. Normal- U 0 . qL"
the second harmonic. For values of aoL<0.20, the ized third harmonic .I
maximum value of the second harmonic occurs at for various values of .12
Km 1.25. For larger values of aoL, these maxima are a*L. Dashed linegives values of dis- .Oe
seen to occur at lower values of K. Similarly, the gpationlesu theory. d .o
maximum values of the third and fourth harmonics .04 -

are affected by the parameter aoL as shown in Figs. %'J0.3

10 and 11. As a consequence of the frequency squared Co, t .os- '5
dependence of the absorption, these higher harmonics K
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. -. -tion. By assuming the loss mechanism described above,
one can write the integral equation

UCK) a.L..o0 Fzo. 11. Normalized

L - -fourth harmonic for y=Cxm--a y(Q)dt, (Al)
various values of aeL.
Dashed line gives valuesof dissipationless theory, where a is a constant. This integral equation is of the

-a.2.. type known as Volterra's linear integral equation of
.0 1.0 .5 LoZ.s the second kind; the solution may be obtained by

K successive substitutions.' The solution obtained by this
method may be written as

The work was supported by the U. S. Army Research yfCx-A.(a(), (A2)
Office (Durham) and by the Office of Naval Research.

where A.(ax) is the hypergeometric series
APPENDIX ax ( ax)'

By assuming the rate of loss of a quantity to be A.(ax)= 1-- +
proportional to the quantity present at each instant, m-+1 (m-+1)(m-+2)

one expects a decay of the quantity according to an (ax)'
exponential law. However, this is true only if the +- ... (A3)
quantity would remain constant if the loss mechanism (m+1)(m+2)(m+3)
were absent. We shall consider here the case where the
quantity changes according to a power law in the This series becomes the exponential series when m=0,interval if absorption were not present. i.e., when y is a constant if the absorption were absent.

Let the dependence of the quantity y on the inde- ' W. Lovitt, Linear Inktgral Equations (Dover Publications,
pendent variable x be y=Cx- if there were no absorp- Inc., New York, 1950), p. 13.
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Calculations of Finite-Amplitude Distortion.

Bill D. Cook, Research Assistant, Physics Department, Michigan State
University, East Lansing, Michigan, U.S.A.

Abstract: The distortion of plane finite amplitude sound Waves in a dissipative, non-
dispersive medium can be calculated by an iterative process of allowing the wave to
distort and then correcting for the absorption. Results of such calculations are
presented.

In the last few years, there has been considerable interest in the problem of
finite-amplitude sound waves in dissipative media, primarily, because of the excess
absorption of these waves. Most theoretical attempts to calculate finite-amplitude
distortion and, consequently, the absorption have not been entirely successful. The
chief difficulty with these theoretical attempts, which are usually based on equations
approximating the exact differential equations, is that the range of reliability
usually extends only up to the neighborhood of the discontinuity distance as given
by the dissipationless theory. However, from the phenomenological aspects of the
problem, a simple model can be formulated from which solutions for Sreater distances
can be calculated. In this paper, an outline of this model is given and mome of the
more interesting conclusions are noted.

This model basically consists of applying distortion and absorption mechanism$
in an iterative manner. This model is based on two fundamental processes which
describe the distortion and absorption mechanisms independently. The mechanism
for the distortion is described by a change in phase velocity directly proportional
to the particle velocity. This may be written as

c = c + [( 12A) + 1 u (1)

where c is the velocity of sound waves of infinitesimal amplitude and u is the
instantaneous particle velocity. The terms A and B, which are constants for a given
medium and a given temperature, are defined by the equation of state relating the
instantaneous pressure p and density p in the following equation:

p P+ A [p1 + (B/.) rP-Po()

where the zero subscripts refer to the undisturbed medium. For this model it is
assumed that only this linear change in phase velocity causes the wave to distort.
This distortion is produced as points on the wave having larger values of particle
velocity tend to overtake points of lesser values. (see Fig. 1).

The absorption mechanism is described by assuming that the rate of absorption
may be obtained by calculating the absorption of each harmonic independently accord-

ing to the amount of the harmonic present and to
-- the square of the frequency of the harmonic. This

I %f (0) assumes that the absorption mechanisms are linear.

With these two mechanisms, the procedure for the
calculation of finite-amplitude distortion is the__ following: assume an initial waveform f(x) which
say be described by a set of Fourier coefficients

X"0 bn; allow the wave to distort while propagating a

small distance, producing the function fl(x)
I

I.
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coefficients for absorption; and then allowing theme coefficients to describe the
now waveform and continuing this process In an iterative mansor. By assuming that
the wevesahpo does not become multiple valued because of the absorption, one say cal-

culate by this continuing process the shape of the wave at all distances. Although
the generation and absorption of harmonics are treated independently in each interval,
the end result contains the interaction between these mechanisms.

A model somewhat based on the saw aspects outlined here was used by Fox and
Wallace(l) in their attempt of calculating absorption coefficients for finite-ampli-
tude waves. They graphically analysed the waveforms to obtain the Fourier coefficients.
However, it is possible to use a parametric integration method for calculating the
distortion process which allows the problem to be easily adapted to high speed com-
putation. If the function f(x) is known analytically, the function f (a) may be
obtained by introducing x = 8 + k f(e) into f(x). The torm kf(e) Intloduces the
distortion mechanism required by Eq. 1. The quantity k represents the distance
the wave has propagated in the interval in terms of the fractional distance to the
discontinuity distance L for an initially sinusoidal wave. Introduction of the
paramter a allows the coefficients b to be calculated from

n' I

b o 2 {f(e) sin [ne + nk f(e)][l + k f'(e)] do (3)

The discontinuity distance L represents the distance which initially sinusoidal
waveform travels in a dissipationless medium before becoming multiple valued. At
this distance, the wavefront has an infinite slope, however, the peak has moved
only the distance of one radian with respect to the zero points of the wave. The
distance L is given by

L - c.f2[(B/2A) + 1] Ul(0) }"l

where f is the frequency of the wave and U (0) is the maximum partilch velocity
of the initial sinusoidal wave. For this Lodel, this distance L is sufficient to
describe the distortion mechanisms and, consequently, is an important parameter in
describing the results.

The absorption coefficient a of a wave of infinitesimal amplitude with the
frequency of the fundamental compSnent completely describes the absorption mechanism;
hence, it is another important parameter for this model. Each harmonic is absorbed
essentially exponentially for each interval in each iteration. The property of heat-
conducting, viscous media having an absorption coefficient dependent on the square
of the frequency is also taken into account. 1.0

Using the model previously described,
calculations were made using a high speed
electronic computer. To accurately retain
the shape of the waveform, as many as U (K)
sixteen harmonics were computed. The a
value of k, the length of each Itera- U 1 (0)
tion was taken to be 0.05, one twentieth
of the discontinuity distance. The results .5
are presented in terms of the dimensionless
product a L which adequately describes both
distortioa and absorption mechanisms. This
parameter a L Is related to the inverse of
the Reynold number.

This model is not expected to be valid for
extremely intense sound waves which may
produce periodic shock front@s but rather for 0
sound waves of moderate amplitudes travelling 0

in a fairly absorbing medium. The results
presented are within these limitations. K

Figure 2.
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Figure 3. Figure 1.

1.0 "

OII

QL* .101

KK
Figure 2 shows typical results from calculations made from this model. The

amplitude of the particle velocity U (K) of the harmonics are normalized to the
amplitude U (0) of the initial sinuslidal wave. The value of cz L equals 0.10 for
these curveS. The abscissa, capital K, measures the distance toe wave travels in
unit: of the discontinuity distance. It is to be particularly noted that these
calculations extend to 10 times the discontinuity distince. For these calculations,
the amplitudes of the higher harmonics have their peak in the region where K is
between 1 and 2.

Figure 3 shows the effect of the nonlinear propagation on the dissipation of
the sound intensity calculated from the previous curves. As expected, there is a
large difference between the exponential decay (dashed line) and the decay predicted
by this model (solid line). The predicted greater absorption is, of course, caused
by the higher rate of absorption of the generated harmonics. To describe this
higher rate of absorption, one may define a finite amplitude absorption coefficient
as

C " 1 Nd(5

This coefficient describes the rate at which the energy of the total wave is being
dissipated at any given distance. One may similarly define a coefficient a for the
energy carried by the fundamental component as

=- d(.1) (6)

ZU 2 dX

The absorption coefficient Cl easures the rate of loss of energy from the
fundamental component alone while m4 asures that from the total wave.

Figure 4 shows these coefficie ts (normalized
to ano) for the parmter 1 L = 0. 10. It is Impor-
tant to note that the absopttion coefficient , for
the fundamental frequency differs from the totll o 0
absorption coefficient CIT for most values of K.
It can be concluded that the total absorption
coefficient can not be always obtained by measure- .01
ments of the fundntal component only. The differ- .
ences between a, and a can be very large at small to
distances where the en=ry carried by the funds-
mental is being lost by both distortion and
absorption, while the energy of the total wave
is being lost only by absorption. ..

As the results depend on the parmter a L It
is interesting to lnvestigate the dissipatio oka I

the intensity as a function of this parameter. .01 1.0 2.A
Figure 5 shows a semi-logarithmic plot of the K

Figure 5.
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intensity for different values of a L. For large values of coL(>0.5), where the
absorption is large or where the noglinear effects are small, the decay is nearly
exponential as the lover curve in Figure 5 is almost a straight line. In these
cases, the wave is absorbed so fast that the nonlinear effects do not become
appreciable. Hence, there is little or no excess absorption. For smaller values of
a L, the wave become appreciably distorted and the excess absorption becomes
n~ticeable. The upper-most curve of Figure 5 shows that the excess absorption
become, prominent after the wave has propagated to the vicinity of the discontinuity
distance.

The differential absorption coefficient 0; gives a more detailed view of the
rate of absorption. Figure 6 shows the absorption coefficients corresponding to
the curves in Figure 5. For the smaller values of q L, the absorption coefficients
have their maxima in the vicinity of K - 1.6 L. Thil corresponds to the situation
that the peak of the initial wave move x/2 with. respect to the zero points of the
wave. Physically, the movement of this peak is limited to this range as the particles
cannot move through each other.

In Figure 7 the maximum values obtained by the absorption coefficient are
plotted as a function of a L. For values of large c L(>I), the finite amplitude
distortion is completely nugligible. For small valuts of a L, i.e., large non-
linear effects, the maxium absorption becomes inversely pr~portional to the pare-
"oer c L. In other words, at large sound pressures, the maxium absorption
coefficlent is directly proportional to the initial sound pressure. The nature of
the curve in Figure 7 agrees somewhat with the theoretical results as outlined in
the review paper of Zarembo and Krasil'nikov (2).

Although this model approach is an over simplification of the problem of
finite-amplitude distortion, the results obtained from It are beneficial in under-
standing some of the properties of finite-amplitude distortion. At present there
is not a sufficient amount of experimental data to check the range of validity of
the results obtained using this model. (This work was supported by the Office of
Naval Research, U.S. Navy and the U.S. Army Research Office (Durham)).
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Optical Effects of Ultrasonic Waves Producing Phase and Amplitude Modulation

L. E. HAxoRov*
Dopar-Sews of Pkysiks, Mickigau Stak Uxiw'siiy, Eas- Lomsisg, Mickigas

(Received June 18, 1962)

A theory is developed for the diffraction of light by ultrasonic waves of sufficiently high frequency, large
amplitude, and/or large beamwidth that the emerging light wavefront is significantly amplitude modulated
in addition to the phase modulation considered in the Raman-Nath approach. The ultrasonic beam is con-
sidered to consist of N adjacent sections and the final diffraction spectrum to result from N successive
diffractions. The diffraction orders emerging from a given section are considered to be sources for further
diffraction by the next section. Only phase modulation of the separate plane waves (diffraction orders) is
considered within a section. Refraction of light is not considered as such; it is characterized by successive
redistribution of light in the diffraction orders. Numerical results are obtained by iterations using an elec-
tronic computer. These results are compared with measurements.

INTRODUCTION grating concept are called the Raman-Nath approach

T HE diffraction of light by ultrasonic waves has for sake of brevity.
been the subject of numerous experimental and When the ultrasonic frequency, amplitude, and/or

theoretical investigations. Raman and Nath' developed beamwidth become large, refraction causes significant
a theory for conditions under which the ultrasonic fre- amplitude modulation along the emerging light wave-
quency, amplitude, and/or beamwidth are sufficiently front. Extermann and Wannier," Wagner,' Van Cittert,'
small that the refraction of light within the ultrasonic and Mertens. have obtained solutions for such condi-
beam may be neglected. Under such conditions the tions. Their results contain varying degrees of approxi-

mation and complexity.
ultrasonic beam may be considered to act as a pure
p/hase grating producing only changes in the relative In this paper, a solution to the problem of diffraction

phase of the initially plane incident light wave and no of light by sinusoidal, plane, progressive, ultrasonic
intensity changes. The Raman-Nath approach has waves is presented. The ultrasonic beam is considered
proven useful over a limited range. Herein, the Raman- to consist of N adjacent ultrasonic beams. For N

Nath theory and other theories based on the phase I R. Extermann and G. Wannier, Helv. Phys. Acta. 9, 520-532
C Prsentaddrss:(1936).

"Present address: Bell Telephone Laboratories, Inc., Murray a1E. H. Wagner, Z. Phydk 141, 604-621 (1955).
Hll, New Jersey. 'P. H. Van Cittert Phvsica 4 (1937).

. V. Raman and N. S. Nath, Proc. Indian Acad. Sci. A2, 406- R.Mertel. -. dl Ko Ichp.
412 (1935); AS, 75-84 (1936). Beig. 12,1-37 (1950).
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0-0, SECTION nth SECTION n0.01 SECTION Using the identity
I exp(-ia sinb)

+ x
I 0ln-I .4-.

I.0 - +expliasin(-b)] - J,(a) exp(--iqb), (5)

X.... Eq. (4) may be expressed in the form
.... "'Wol *,(-)(s') W , (0) ( \) - 2

Fio. 1. Schematic diagram showing a diffraction order with
amplitude #,(m-1)(0) from the (a--) st section incident at z-O
on the nth section with angle of incidence 9,; sound propagation 4 1 tang
in the +x direction, incident light in the +s-direction. X J- Jsin({ • }

sufficiently large only phase modulation of the light (it t9wavefronts need be considered within each of the N Xe [" 2 " (6)
intervals. The final diffraction spectrum is considered e x- .
to result from N successive diffractions.

In Eq. (6) a term for a particular q represents light
THEORY incident on the nth section at an angle 9, and incident

Consider, as indicated in Fig. 1, a section within the on the (n+l)st section at an angle 0,+0#, where
ultrasonic beam having thickness I assumed to be sinP. kX,/(uo\*). (7)
sufficiently small that refraction of light within the
distance I may be neglected. Let this be the nth of Consider one such component (particular p and q) from
many identical sections making up the whole ultrasonic Eq. (6) denoted by •.0 (x'). This relates a particular
beam. Diffraction orders emerging from the (n-- 1)st emerging component at x' to the one, namely 0,(•-) (0),
section may be considered sources for further diffraction incident on the nth section at x=0. In order that each
by the nth section. Figure 1 schematically represents successive section may be treated in mathematically
the following situations: A diffraction order with ampli- identical manners, 0,.,(") (x') must be transformed to
tude 0,(-')(0) from the (n- 1)st section is incident at 0b,,()(0) in order that the point of incidence on the
x=0 on the nth section with angle of incidence t9,. (n+l)st section will also be at x=0.
Neglecting refraction, the incident light undergoes a The transformation from x' to xfO involves an
change in phase on progressing through the nth section. ultrasonic phase shift and an optical phase shift as indi-
This change is expressed by' cated in Fig. 2. The effect of an ultrasonic phase shift

-2ri " is expressed by a factor exp(-ipS*), where 8" is the
*,(")( )ffi,(f- 4 )(0) exp[| f ,4s)dsl, (1) ultrasonic phase difference. From Fig. 2 it is seen that

L A J J exp (- ipi*) = exp( 2 ripl tan9,/X*). (8)

where the integral in Eq. (1) represents the optical
path through the nth section, X is the wavelength of Similarly, the effect of the optical phase shift is ex-
light in vacuo, and ju(s) expresses the refractive index pressed by a factor

along the light path. Using exp(--iB) =exp(2rio tanG, sin9,/)

p(s)=0o+;u sin21r[(s sinO,-x')/.*], (2) =exp(-2ripl tan,/X*), (9)

where X* is the wavelength of sound and the Raman- where 6 is the optical phase difference and Eq. (7) has

Nath parameter v,= 2wrg/X, (3) been used. The transformation then consists of multi-

Eq. (1) becomes

*,(t)x')*,a..i)0)exp)

tanaG X') I

Xexp-- sin 2 r_- .0

'In this development the time dependence of the light &ad
sound are not Included, with the result that the Doppler shifts of FIo. 2. Schematic diagram illustrating the optical and ultra-
the various diffraction orders are not shown. The small Doppler sonic phase differences involved in transforming from xmx'
shift is neglected in writing the coefficient of the integral in Eq. (I). to 0.
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plying 0,,qcft(x) by the right-hand members of Eqs. 5
(8) and (9). Noting that these two factors are simply
complex conjugates, and that their product is unity, ,
then

O.,,01 (0). W). (10) 3
Having transformed the separate components corre-

sponding to various p and q to a common point x=0,
the components propagating in a given direction may
be combined to obtain the amplitudes of the diffraction
orders which act as new sources for further diffraction
in the (n-+1)st section. The terms to be combined to 0
obtain the amplitude of the rth order are those for 0 ./2

which p+q=r, i.e., 2,Xl"

FiG. 4. Intensity modulation of the light wavefront emerging from
+ [l tanef the ultrasonic beam for T;-4 and Qr-: 1.5, usig (7.

hrsin- , tn In either Eq. (11) or Eq. (16)
Xexp exp 00(°) =, •-0'00()=0, (17)L X cose, .J L and11

where x' has been expressed by Pi)J =J(0 1 ) (18)

x'= tanO,. (12) for unit incident-light amplitude and normal light inci-

Equation (11) expresses an iterative procedure for dence. The light intensities in the final spectrum are
calculating the final diffraction order amplitudes 0,(N) obtained from
resulting from N successive diffractions. I,= I0,(N)12. (19)

Equation (11) may be put into an approximate form
which is more suitable for numerical evaluation. Using It has been assumed that the refraction of diffraction
the approximations orders within each section may be neglected and the

Raman-Nath approach applied therein. LimitationstanBsinB4 -= -kX/(;oX*), (13) on Q and v for validity of the Raman-Nath approach

1/cos8k=seck---l+_I ,k2, where 0k--sin0k, (14) have been given in the form'

and introducing the parameter' Qp<<2. (20)

Ql= (2,Wr)/(poX0'), (15) The degree of inequality required in (20) depends on the
Eq. (11) becomes accuracy required. It is proposed that the number of

sections chosen for application of the present theory be
+/' sinipQ1. sufficiently large that (Qv), be less than two by a

e---g', jl ) /factor of one or two orders of magnitude. The number
of sections N may be increased as required to obtain

Xexp(-JiprQi). (16) theoretical results for large Qr and vr pertaining to the

0.4 VT* 2.0 0.4 VT - 4.0 04 VT.40 tol ultrasonic beam.
Straightforward application of the present theory

.0would require thatS0.3 03 0.o,

I=LIN, (21)
0 I2 0.2 0 0.2 where L is the total width of the ultrasonic beam, be

Sused in Eqs. (3) and (15) which define v, and Q, which
0.o . 0.1 appear in Eq. (16). However, an alternative approach

I Lis proposed. Note, in Eq. (18), that in the first section

00L o 0 0 the result is independent of Q. Refraction effects, as
o,d., 0,o., ore,, characterized by spreading of light into the various

Fio. 3. Light intensities predicted by the present theory di~ffroc ion orders as it emerges from each succeive(vertical bars) for Qr-l.5, using Qr' In Eq. (16) and by the section, are in no way considered in the first section.
Raman-Nath theory (circles). If the ultrasonic beam width L were divided into twice

'The parameter Q appears in some form in various other as many sections, refraction effects would be ignored
theories for the diffraction of light by ultrasonic waves, in a first section of half the width. In order to approxi-
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.0 ranging from -4 to +4. For a given range of Vr the

range of p should be taken over values for which signifi-

o0. cant light occurs in the pth orders. The final results are
probably less reliable as Ir approaches the maximum

0.6 IpI used.
1, The differences between predictions of the present

0.4 theory and the Raman-Nath theory are illustrated in
Fig. 3. The predicted light intensities in the zeroth

0.2 through fourth diffraction orders are shown for Qr= 1.5,
using Q,' in Eq. (16), for Vrf=f

2, 4, and 6.
Using the calculated amplitudes and phases of the

0 2 4 9 a diffraction orders, the calculated intensity modulation of
V, the light wavefront emerging from the ultrasonic beam

Fro. 5. Theoretical (line) and experimental (circles) zeroth- for the vr= 4 case shown in Fig. 3 is shown in Fig. 4.
order light intensity vs Raman-Nath parameter for Qr-0.62, Note that the intensity modulation is quite significant.
using Qr'. This intensity modulation explains the failure of the

nral man-Nath theory for this case where (QV),=6.
mately account for refraction effects in a first interval Taking the refraction viewpoint, concentration of light

of finite width, it is proposed that about ,r indicates light refracted toward this region

Qj/=QT/(N-1) (22) where the density of the medium and hence the refrac-
tive index is greatest.

be used in Eq. (16) to replace Q1. The Raman-Nath

parameter ti should remain as 1.0

vi=WrlN. (23) 0.,

Use of Eq. (22) is equivalent to using

Q'= QTN/ (N- 1) (24) 0.

as an "effective Q" to compensate for use of finite .4

sections of the ultrasonic beam. Obviously, as the
number of sections N becomes very large, the difference 0.2

between Qr' and Qr vanishes.

NUMERICAL RESULTS AND COMPARISON WITH 0 2 4 a I

EXPERIMENTAL DATA VT

Numerical calculations were made from Eq. (16) FiG. 7. Theoretical and experimental zeroth-order light intensity
vs Raman-Nath parameter for Qr- 0.93, using Qr.

using the Michigan State Integral Computer (MISTIC).
The choice of 0_•VT•_8, QT:1.5, and N=f16 gives Figures 5 through 10 show calculated zeroth- and first-
(Qv), <0.05. The value N= 16 was also chosen for con- diffraction-order light intensities for Qr=0.62, 0.93,
venience in a binary computer. Calculations were made and 1.24, using QT' in Eq. (16). The predictions of the
for 0.25 intervals of VT and for p (and therefore also r) Raman-Nath theory are also shown in these figures,

1.0 -where clarity permits. Experimental results for the
indicated values of Qr, obtained by Klein,' are also

shown in Figs. 5 and 7 through 10. Klein's measure-
ments were made at 5.23 Mc in water. Qr was varied by
varying the ultrasonic beam width (2.0, 3.0, and 4.0 cm

0.6 -for the data shown).
i,1 Klein found good agreement between Mertens'&

0.4 theory and his experimental values of light intensity

in the zeroth and first diffraction order,' for a limited
0.2 range of Qr and vr. The present theory agrees with

the Mertens theory where the Mertens theory is in

0 reasonable agreement with measurements. However,

VT the present theory appears to be valid over a wider

FIO. 6. Theoretical first-order light intensity vs Raman-Nath range of Qr. and tr.

parameter for Qr-0.62, using Qr. IW. R. Klein, M. S. thesis, Michigan State University (1962).
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For comparison, the zeroth-order light intensities 1.0
predicted by the present theory (using both Qr= 1.5
and Qr'- 1.5(N/N- 1) for calculations), by the Mertens' o.s
theory for Qr= 1.5, and by the Raman-Nath theory
are shown in Fig. 11. If the present theory is valid, then 0.6
the Mertens theory is a good approximation, in this *I
case, for vr_<4.0. The difference between the curves in 0.4
Fig. 11 for the present theory using Qr and QT' is not
great, but the difference is generally in the correct 02

sense to give better agreement with experimental values
by using Qr'. 0

Calculations have been made for Qr=0.31 and com- 02 4 s
pared with the predictions of the Raman-Nath theory. YT

The predicted light intensities in the diffraction orders F,,. 10. Theoretical and experimental first-order light intensity
agree to within 0.01 up to the values of vr indicated in vs Raman-Nath parameter for Qr- 1.24, using Qr'.
Table I. This agreement over a fairly large range of or
demonstrates that the method of calculation used in ,.0
the present theory gives results which approach the
Raman-Nath results for a small value of QT. 0.'

It should be pointed out, however, that only agree-
ment in light intensity has been obtained for QT= 0.31. 0.
The relative optical phases should also be considered. T

The intensity modulation of the emerging light wave- 0

front shown in Fig. 4 for QT= 1.5 results not only from T

light amplitudes which differ from those predicted by 0.2
0.2M

1.0
01

0 2 4 6 S
O.. VT

Fio. 11. Zeroth-order light intensities vs Raman-Nath parsme-
0.6 ter from present theory (using both Qr-1.5 and Qr'-1.5

(N/N- 1), Mertens' theory for Qr- 1.5, and Raman-Nath theory.

0.4 the Raman-Nath theory, but also from different rela-

0 tive phases of the various diffraction orders. The relative
o.3 phases in the Raman-Nath theory are either 0 or r rad,

according to whether the Bessel function is positive or
0 0 It 4 -- " negative, respectively. The calculations for Qr,0.31,

VT though the light intensities agree with the Raman-Nath

Fio. 8. Theoretical and experimental first-order light intensity vs theory, show marked deviations in relative phase from
Raman-Nath parameter for Qr-0.93, using Qr'. 0 or x" rad. This indicates that the Raman-Nath theory

may appear satisfactory from intensity measurements
,.0 but not be accurate where the relative phases are con-

cerned. The relative phases become important, as
0.s pointed out in a previous paper,' in a situation in-

volving successive diffraction of light by two separate
0.9 ultrasonic beams.

1* TAsxz I. Maximum values of sr for which the predictions of0.4 the present theory and the Raman-Nath theory agree to within
0.01 light intensity. Qr-0.31.

0000 ____Order __ __ _0 _ __ ___h __ __ __0 __ __ 3__ __ L40.20

0.~~

0 2 4 O 0 or 7.0 >8 7.25 6.0 4.0
Y'r

Fto. 9. Theoretical and experimental xeroth-order light intensity ' L. E. Hargrove, E. A. Hiedemann, and R. Mertens, Z. Physik
vs Raman-Nath parameter for Qr- 1.24, using Qr'. 167, 326-336 (1962).
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V different Qr, and may be compared to illustrate the
difference in intensity modulation for ultrasonic beams

4 with the same "diffraction strength" vr but different
Qr. Finally, it is remarked that the light intensity

S3 modulation for the smallest (Qo)r calculated (QT=0.31
and vT=0. 25, giving (Qv)roT-40.08) deviates from unity

2 •by at most approximately 0.04.

DISCUSSION

The predictions of the present theory are in good
So 2. agreement with Klein's experimental data. The agree-

2., . ment is somewhat better, for the larger values of QT

FIG. 12. Intensity modulation of the light wavefront emerging from and sr, than that found by Klein using Mertens' theory.
the ultrasonic beam for Vr-4 and Qr-0.31, using QrT. Diffraction of light by high-frequency, intense, ultra-

sonic waves is of particular interest for determining
The agreement in intensity predictions may also be the waveform of distorted finite-amplitude waves in

considered to demonstrate that the Raman-Nath liquids. While the present results are restricted to
approach predicts the correct intensities even when sinusoidal waves, work is in progress to extend the
there is some degree of light intensity modulation along theory to include arbitrary ultrasonic waveform,
the emerging light wavefront. Figure 12 shows the in- especially waveforms of the finite-amplitude type.
tensity modulation calculated for QT = 0.31 and T= 4 .0.
It has been shown in Table I that the present theory and ACKNOWLEDGMENTS
the Raman-Nath theory give essentially the same light The author wishes to thank Professor E. A. Hiede-
intensities through fourth orders up to this value of VT.
Therefore, the intensity modulation shown in Fig. 12 mann for the interest he has shown in this work. Credit
is an estimate of the upper limit of intensity modulation is due B. D. Cook, who suggested the successive
for which the Raman-Nath theory gives the correct diffraction approach to the present problem.
light intensities in the first four diffraction orders. This work was supported by the U. S. Army Research
Figures 4 and 12 are for the same value of rr but Office (Durham) and by the Office of Naval Research.
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M. TI OOUMIOB OF LOWGITUDZMAL TO SURFACE WAVES IN SMIDS

Velter 0. Mayer
physics Department, Michigan State University,

East Lansins, Michigan, U.S.A.

Various emperimental techniques for the production of surface waves on a free
surface of a solid have been described in the past (1). Quite frequently one uses
the method of converting a longitudinal wave in a solid to a surface wave on another
solid in contact with the first. The present paper is concerned with this type of
mode conversion because the snergy transfer from a longitudinal to a surface wave
seems to offer possibilities for decressing the intensity of the reflection of the
longitudinal wave in the solid through which it is propagated. Some experi/mntal
results for a specific case are given here.

The production of a surface wave is usually acomcplishod by the familiar wedge
method shown in Figure 1. The amplltude of the surface wave reaches a maximum (2)

-when the angle of incidence a is chosen that the ratio
,g VL/V = sini where VL is the velocity of the longitu-
71i. 1 dinal wave in solid 1, end V5 is the velocity of the

surface wave on solid 11. An arrangensnt of this type
has the disadvantage that one cannot easily determine
how such energy contained in the longitudinal wave is
transferred to the surface wavs. A slightly different

. . w.edse was therefore used, shown in Figure 2. An ultra-
sonic pulse is emitted by transducer Z. If the bottom

L surface of the wedge is in contact with air the pulse
will be totally reflected and will be picked up by the

receiving transducer L The amplitude of the received pulse is taken as reference
for the subsequent experiment in which the wedge is placed on the smooth surface of
solid 11. In the experiments described here solid 11 is alumimmm while solid I is

Plei8glas. The velocities VL and V3 were determined
experimentally by a conventional pulse method. Plac-

Fig. 2 ing the Pleaiglas wedge on the aluminum surface allows
the mode conversion from a longitudinal wave in the
wedge to a surface wave on the aluminum. The wedge is

E R cut in such a way that the angle of incidence a satn is
fine the above condition for optimum surface wave pro-
duction. With the wedge on solid 1I there is no more
total reflection of the incident pulse, and the ampli-

i • tude of the signal received by transducer I should de-
crease by an mount determined by the energy converted

to the surface wave. Howver, it is found that using the Plaeiglas wedge the aepli-
tude of the received pulse increases when the wedge in placed on the aluminum. This
may be explained by considering the loss mechanisms. If the wedge is not in contact
with solid 11 every part of the sound signal emitted by transducer I travels the sawe
distance in the wedge before it reaches transducer L The absorption in the Plexi-
glas is quite high. If the wedse is then placed on the aluminum a surface wave isgBenerated between the two solids. As this weve propagates along the surfaces it my

radiate energy back into the wedge. If the absorption of this wave should be less
than the absorption of the longitudinal wave in the wedge a signal of higher ampli-
tude would be received at R than If the signal had traveled entirely in the Plexiglas.
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One would, therefore, like to minimise this radiation back into solid I. Ideally,
one would like to separate the surface wave from the bottom of the wefdg as soon as
it is generated. But this'weve is generated over a finite area of contact between
the two solids, and the sine of this area is determined by the size of the emitting
transducer and the angle of incidence; one therefore encounters certain experimental
limitations In separating the surface weve from the bottom of the wedge. Since the
central portion of the ultraeonic signal emitted from transducer Z contains more ener-

gy than the outside of the besm one might remove the
corresponding most intene portion of thq surface, move

Fig. 3 by rounding off one edge of solid 11 and placing It in
relation to the wedge as indicated in Figure 3. The
radius of curvature of the rounded edge is big enough
so that the surface wove will travel around it (3).
Adjusting the relative positions of the wedge and solid
II in this manner one transfers the msot intense part
of the longitudinal wave in the wedge to a surface wave

I which is then conducted away from the wedges, thus re-
ducing radiation back toward the receiving transducer.

In order to decrease further the area of contact in which surface waves are gone-
rated one can decrease the dimensions of the emitting transducer. Doing this one nar-
rows the width of the longitudinal wave impinging on solid II and one can reduce the

received signal by replacing the aluminum block by a
solid alminum cylinder as shown in Figure 4. This re-

Fig. duce@ the area of contact between the two solids and
assures a more efficient separation of the surface wave
from the bottom of the wedge. Changing the sine of
the aluminum cylinder changes the effective area of
contact and thus the amplitude of the received pulse.
The angle of incidence a is not affected by the size
of the cylinder.

The surface wave traveling around the cylinder Is
absorbed by placing some suitable liquid on the cylin-
der; if this is not done, the wove completes the circle
and reaches the wedse again where it Is converted back
into a longitudinal wove which travels towrd L in
this case one has a short eelay line.

The efficiency of mode conversion from longitudinal to surface wave for the various
arrangements described can be seen from the results of experiments using Plexiglas and
aluminum. Using a 5 Ic pulse from a 1.2 x 2.5 ci transducer and placing the entire
wedge on the alumium one receives a signal whose amplitude is shown in Figure 5b.

The reference ampltude (wedge In air) is shown In
Fig. 5 Fiture 5a. The mplitude of the signal has increased

by about 50 percent; thus, placing the entire wedge on
the aluminm block does not reduce the reflections back
into the wedge. Figure 5c show, the received eaplitude
of the reflected longitudinal wove recorded with the
arrangsemnt indicated in Figure 3. In this case the am-I plitude hasderaesoeht A osefciven-

Fit. 6 solid alumina cylinder. The received ampitude is in-Sdicated In Figure 6b, coapared with the reference ampli-
t ude to Figure 6a (wafts in air). The disameter of the

€• Jcylinder was 1.85 cm. The effective area of contact

J between the two solids wos increased slightly by using
a solid aluminm cylinder with a diameter of 6.34 rem.

S b c In this case the received signal had an amplitude shown
in Figure 6c. The results shown in Figure 6 were ob-
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tained by using an emitting transduo&c with dimensions 0.25 z 2.5 on which mintaised
further the effective area of surface wave production. It Is seeo that the reflected
longitudinal move deoreares to about half its amplitude in the last case shown in
Figure 6.

This reduction in amplitude of the reflected longitudinal move Indicates that an
appreciable part of the energy in the longitudinal move can be taken out of solid I
by node conversion to a surface wave on solid 1, easpocially if one considers that the
greatest part of the cross-section of the sound beas is Impinging on the Plexuilas-sir
interface and only a mall part on the Pliglas-alu8imimm interface. The resulting
surface wave can be absorbed very easily so that it will not be reflected back into
solid I. That fraction of the longitudinal wove in solid I which was not converted to

a surface wmve at the boundary can be reduced further
by repeating the process as indicated In Figure 7. In
principle, It should be possible to use this technique
for the surpression of reflections of an ultrasonic
mwve in a solid. Sinie the absorption of the resulting
surface move presents no problem one should be able to
approach the production of progressive ultrasonic moves
in solids using the method outlined here, provided the
velocity of the longitudinal wave in the solid in quos-
tion is smaller than the velocity of the surface move

Fig. 7 on solid II. (This work wmo supported by the Office of
Naval Research, U.S. Navy.)
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Reflection and Refraction of Mechanical Waves at Solid-Liquid Boundaries

by

Walter G. Mayer

Abstract.

The energy ratios of reflected and refracted waves to the

incident wave at ten liquid-solid boundaries are calculated as a function

of the angle of incidence. The influence of the w&ve velocities in the

media and their density on the shape of the curves is discussed.

INTRODUCTION

Knowledge of the energy ratios between incident, reflected, and

refracted mechanical waves at interfaces formed by two dissimilar media

is of great importance in ultrasonicsl-3, seismology 4, and for material

testing techniques5,6. Knott7 and Zoeppritz8 have given expressions

describing the changes of amplitude of reflected and refracted waves

ap a function of the angle of incidence. Based on their work, Ergin 4

has calculated these amplitude ratios for seismic waves incident at both

sides of the ocean floor. Mayer and Kelsey3 have measured the velocities

of ultrasonic waves in solids by observing the amplitudes of the reflected

waves in the liquid. These measurements and the results given here allow

one to draw a number of useful conclusions about the behavior of the re-

flected and refracted waves. However, Ergin considers only the changes

in the energy ratios caused by a relatively small change in the ratio of

the longitudinal to shear wave velocity (essentially the Poisson's ratio)

of the solid medium. The present paper also considers the influence of

the density ratio and the ratio of the longitudinal wave velocities of

the two media.
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RESULTS

The system under consideration consists of a liquid with density

pa and a solid medium with density P2. The plane surface of the solid

is in contact with the liquid. The velocity of the longitudinal wave in

the liquid is VL1. The velocity of the longitudinal wave in the solid is

given by VL2 and that of the shear wave by V.2 . The energy of the incident

wave in the liquid is unity, and the angle of incidence is denoted by a,

measured from the normal to the liquid-solid boundary. According to Ergin ,

the energy ratio of reflected to incident wave is given by

(R/I)2 - ((cos 0 - Acosao(l - B)J/(cos a + Acos(l - B)])2, (1)

where A = VL2 p2 /VLlpl,

B = 2sinysin27(cosy - (VS2 /VL2 )cosp].

The angles 1 and y are the angles of refraction of the longitudin-

al and the shear wave in the solid, determined by Snell's law

VLI/sinc = VL2 /sint = Vs2 /sinT.

The energy ratio of refracted longitudinal wave in the solid

to the incident wave in the liquid is given by
1 2

(L/I)2 . (2co,•. (Acosa cos,)T)/ (coop + Acosc(l - B)J). (2)

The energy ratio of refracted shear wave to incident wave is then

(s/I)2  I - (R/I) - (L/I)•. (3)

Calculations of these ratios were made for a number of solids

with the incident wave in water and oil. The values of velocities and

densities used are shown in Table I. Poisson's ratio a is also shown.
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Table 1. Velocities and Densities Used for Calculations

VLi P1 VL2  Von p2

Water 1490 1.00

Oil 1740 0.87
Steel 5850 3230 7.80 0.281

Brass 4430 2123 8.1o 0.351

Copper 47OO 2260 8.90 0.350
Aluminum 6330 3130 2.70 0.338

Magnesium 5770 3050 1.70 o.306

Velocities in m/sec.

Since one cannot readily see from eqs. (1-3) how the intensity

of the waves is influenced by changes in the various parameters, individual

calculations *ere made for all the possible combinations of liquids and

solids listed in Table I. The results are plotted in Figs. 1-5. The

solid lines are for oil-solid interfaces, the dashed lines for water-

solid interfaces. The letters R, L. and S denote the curves for the

refiected longitudinal wave, the refracted longitudinal wave, and the

refracted shear wave, respectively.

DISCUSSION

The general conclusions drawn from the curves in Figs. 1-5 are

valid only if VL2 > VS2 > VLI. This excludes boundaries formed by some

liquids and plastics where V5 2 < VLl.

The ratio (R/1)2 becomes unity at the critical angle for the

refracted longitudinal wave (siaf a 1) and again at the critical angle

for the shear wave (sin7 - 1). The location of these critical angles

aL and a. depends only on the ratios VL2/VLl and VS2 /VLl. Total reflection

occurs at these angles of incidence regardless of the values of density

and velocity.
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The value of (R/) for normal incidence depends only on VLlPl

and VL2p2; eq. (1) reduces to the well-known formula for the reflection

coefficient. The shear wave velocity is of no consequence at a - 0.

The general behavior and the minima of the (R/I)2 curve remains

essentially the same if instead of given values for VLl and P1 one selects

slightly different values without changing appreciably the acoustic im-

pedance of the liquid medium (water and oil). This also holds for the

maxima of the (L/I)2 and (S/1)2 curves.

Poisson's ratio is not a dominating factor in the behavior of

the curves. Of the solids considered steel and magnesium have the lowest

Poisson's ratios, yet, the curves for the other three substances lie between

those for steel and magnesium.

The energy of the reflected wave is determined mainly by its

value at a = 0. The ratio (R/I)2 stays almost constant until the critical
angle for the refracted longitudinal wave is approached. The width of the

peak at that angle depends on the energy at a = 0 and on the cutoff angle

for the shear wave. The peak is sharper the lower (R/I)2 at a a 0 and the

smaller aS. Beyond aL the curve dips sharply and reaches a minimum which

is always less than (R/I)2 at a = 0. This means that in certain solids a

shear wave can be produced which is more intense than the reflected long-

itudinal wave (Fig. 5). Whether this is possible depends primarily on the

acoustic impedances and to a lesser degree on the shear velocity.

The energy of the shear wave between a = 0 and aL is much

smaller than its energy between oe and a8, the maximum depends strongly

on the values of aS and the width of the (R/1) peak.

With this information, and since the two cutoff angles can be

found easily from Snell's law and the initial values at a w 0 from the

reflection coefficient, it is possible to estimate the behavior of the
three curves (R/I) 2, (L/1)2, and (S/I)2 for a given set of velocities and

densities in the range considered here without having L•o make many time-

consuming calculations.
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R reflected wave,
L refracted longitudinal wave.
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LIST OF FIGURES

Figure 1. Energy relations at oil-steel boundary (solid lines) and

water-steel boundary (dashed lines). R reflected wave,

L refracted longitudinal wave, S refracted shear wave.

Figure 2. Same as Fig. 1 for copper.

Figure 3. Same as Fig. 1 for brass.

Figure 4. Same as Fig. 1 for aluminum.

Figure 5. Same as Fig. 1 for magnesium.
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